Monthly Archives: September 2016

The Myth of Artisanal Programming

Paul Chiusano, the author of the excellent Functional Programming in Scala from Manning (one of the few tech publishers I buy from; worth every penny), recently wrote a blog post titled, “The advantages of static typing, simply stated”.

Lately all I seem to do is rant to people about this exact topic. Paul’s post is way more succinct than anything I can write, so go over there and read it.

While he takes pains to give a balanced treatment of static vs dynamic type systems, it seems much more cut and dry to me. Dynamic languages are easier and faster for development when you’re getting started on a project, and it’s great if that project never gets very big. But they scale very poorly, for all the reasons he describes. Recently, I had the daunting task of reading almost ~10k lines of Perl code (pretty good Perl, in my opinion). It was hard to make sense of and figure out how to modify and extend, whereas the MUCH larger Java codebase (over 100k lines, if I recall) that I worked with years ago felt very manageable.

My own history as a programmer matches Paul’s very closely. I started with Java, which was annoying but not a bad language by any means. Then Python came along and seemed like a liberation from Java’s rigidity and verbosity. But Python, Ruby and others are showing their weaknesses, and it’s no mystery why people are turning to the newer generation of statically typed languages like Scala, Haskell, Go, etc.

People who haven’t been around as long don’t necessarily have this perspective.

In retrospect, it’s interesting to me how we programmers “got sold” on dynamic languages, from a cultural perspective. You might recall that a big selling point was using simple text editors rather than IDEs, and there was this sense that writing code this way made you closer to the software somehow. Java was corporate, while Python was hand-crafted. There was a vague implicit notion of “artisanal” programming in these circles.

The upshot, of course, is that every time you read a chunk of code or call a function or method, your brain has to do a lot of the work that a statically typed language would be able to enforce and verify for you. But in a dynamic language, you won’t know what happens until the code runs. In large measure, the quality of software hinges on how much you can tell, a priori, about code before it runs at all. In a dynamic world, anything can happen, and often does.

This is a nightmare, pure and simple. Much of the strong focus on writing automated tests is to basically make up for the lack of static typing.

True artisanship lies in design: namely, thinking hard about the data structures and code organization you’re committing to. It’s not about being able to take liberties that can result in things that make no sense to the machine and that can cause errors at runtime that could have been caught beforehand.

Data Streams in Ruby

Recently I wrote up some notes on how to do data processing using streams (lazy enumerators) in Ruby. Doing so served two purposes: 1) to help clarify my own thinking about better ways to write code for common data-munging tasks, 2) to pass along to co-workers in the hopes of establishing some informal best practices and initiating some conversations.

I decided to post my notes on github. Take a peek if this sort of thing interests you.